Join SNIA at Pure//Accelerate 2019: Austin, September 15-18

Equal parts education, information, and inspiration, Pure//Accelerate 2019 is where technology and innovation meet. It’s a place to learn about new products, solutions, and integrations. It is a place for technology enthusiasts to explore industry trends, network with like-minded companies, and map out how to stay ahead as the tech landscape rapidly changes.

SNIA Board Member and Chair of the Scalable Storage Management Technical Work Group Richelle Ahlvers will be joining SNIA Storage Management Initiative Board Member “Barkz” at Pure//Accelerate on Wednesday, September 18, 2019 from 2:00 p.m. – 2:45 p.m. for a presentation titled “Reel It In: SNIA Swordfish™ Scalable Storage Management

By extending the DMTF Redfish® API protocol and schema, SNIA Swordfish™ helps provide a unified approach for the management of storage equipment, data services, and servers. Learn how Pure Storage is using the Swordfish RESTful interface to support the implementation of fast, efficient storage products.

Take advantage of special pricing for SNIA members. Register here.

Join SNIA at Pure//Accelerate 2019: Austin, September 15-18

Equal parts education, information, and inspiration, Pure//Accelerate 2019 is where technology and innovation meet. It’s a place to learn about new products, solutions, and integrations. It is a place for technology enthusiasts to explore industry trends, network with like-minded companies, and map out how to stay ahead as the tech landscape rapidly changes.

SNIA Board Member and Chair of the Scalable Storage Management Technical Work Group Richelle Ahlvers will be joining SNIA Storage Management Initiative Board Member “Barkz” at Pure//Accelerate on Wednesday, September 18, 2019 from 2:00 p.m. – 2:45 p.m. for a presentation titled “Reel It In: SNIA Swordfish™ Scalable Storage Management

By extending the DMTF Redfish® API protocol and schema, SNIA Swordfish™ helps provide a unified approach for the management of storage equipment, data services, and servers. Learn how Pure Storage is using the Swordfish RESTful interface to support the implementation of fast, efficient storage products.

Take advantage of special pricing for SNIA members. Register here.

The Blurred Lines of Memory and Storage – A Q&A

The lines are blurring as new memory technologies are challenging the way we build and use storage to meet application demands. That’s why the SNIA Networking Storage Forum (NSF) hosted a “Memory Pod” webcast is our series, “Everything You Wanted to Know about Storage, but were too Proud to Ask.” If you missed it, you can watch it on-demand here along with the presentation slides. We promised Q. Do tools exist to do secure data overwrite for security purposes? A. Most popular tools are cryptographic signing of the data where you can effectively erase the data by throwing away the keys. There are a number of technologies available; for example, the usual ones like BitLocker (part of Windows 10, for example) where the NVDIMM-P is tied to a specific motherboard. There are others where the data is encrypted as it is moved from NVDIMM DRAM to flash for the NVDIMM-N type. Other forms of persistent memory may offer their own solutions. SNIA is working on a security model for persistent memory, and there is a presentation on our work here. Read More

Your Questions Answered – Now You Can Be a Part of the Real World Workload Revolution!

The SNIA Solid State Storage Initiative would like to thank everyone who attended our webcast: How To Be Part of the Real World Workload Revolution.  If you haven’t seen it yet, you can view the on demand version here.  You can find the slides here.

Eden Kim and Jim Fister led a discussion on the testmyworkload (TMW) tool and data repository, discussing how a collection of real-world workload data captures can revolutionize design and configuration of hardware, software and systems for the industry.   A new SNIA white paper available in both English and Chinese authored by Eden Kim, with an introduction by Tom Coughlin of Coughlin Associates and Jim Handy of Objective Analysis, discusses how we can all benefit by sharing traces of our digital workloads through the SNIA SSSI Real-World Workload Capture program.

In an environment where workloads are becoming more complex — and the choices of hardware configuration for solid-state storage are growing — the opportunity to better understand the characteristics of data transfers to and from the storage systems is critical.  By sharing real-world workloads on the Test My Workload repository, the industry can benefit overall in design and development at every level from SSD development to system configuration in the datacenter.

There were several questions asked in and after the webcast.  Here are some of the answers.  Any additional questions can be addressed to asksssi@snia.org.

Q: Shouldn’t real world workloads have concurrent applications?  Also, wouldn’t any SQL workloads also log or journal sequential writes?

A: Yes.  Each capture shows all of the IO Streams that are being applied to each logical storage recognized by the OS.  These IO Streams are comprised of IOs generated by System activities as well as a variety of drivers, applications and OS activities.  The IOProfiler toolset allows you to not only see all of the IO Stream activity that occurs during a capture, but also allows you to parse, or filter, the capture to see just the IO Streams (and other metrics) that are of interest.

Q: Is there any collaboration with the SNIA IOTTA Technical Work Group on workload or trace uploading?

A:  While IOTTA TWG and SSS TWG work closely together, an IO Capture is fundamentally different from an IO Trace and hence is not able to be presented on the IOTTA trace repository.  An IO Trace collects all of the data streams that occur during the IO Trace capture period and results in a very large file.  An IO Capture, on the other hand, captures statistics on the observed IO Streams and saves these statistics to a table.  Hence, no actual personal or user data is captured in an IO Capture, only the statistics on the IO Streams. Because IO Captures are a series of record tables for individual time steps, the format is not compatible with a repository for the streaming data captured in an IO Trace.

For example, an IO Trace could do a capture where 50,000 RND 4K Write and 50,000 RND 4K Read IOPS are recorded, resulting in 100,000 4K transfers, or 40M bytes of data.  OTOH, an IO Capture that collects statistics would log the fact that 50,000 RND 4K Writes and 50,000 RND 4K Reads occurred… a simple two item entry in a table.  Of course, the IOPS, Response Times, Queue Depths and LBA Ranges could also be tracked resulting in a table of 100,000 entries times the above 4 metrics, but 400,000 table entries is much smaller than 40 MB of data.

Both of these activities are useful, and the SNIA supports both.

Q: Can the traces capture a cluster workload or just single server?

A: IO Captures capture the IO Streams that are observed going from User space to all logical storage recognized by the OS.  Accordingly, for clusters, there will be an individual capture for each logical unit.  Note that all logical device captures can be aggregated into a single capture for analysis with the advanced analytics offered by the commercial IOProfiler tools.

Q: Have you seen situation where the IO size on the wire does not matched what application request?  Example Application request 256K but driver chopped the IO into multiple 16K before sent to the storage. How would we verify this type of issue?

A: Yes, this is a common situation. Applications may generate a large block SEQ IO Stream for video on demand.  However, that large block SEQ IO Stream is often fragmented into concurrent RND block sizes.  For example, in Linux OS, a 1MB file is often fragmented into random concurrent 128K block sizes for transmission to and from storage, but then coalesced back into a single 1024K BS in user space..

Q: Will you be sharing the costs for your tools or systems?

A: The tool demonstrated in the webcast is available free at testmyworkload.com (TMW).  This is done to build the repository of workloads at the TMW site.  Calypso Systems does have a set of Pro tools built around the TMW application.  Contact Calypso for specific details.

Q: Can the capture be replayed on different drives?

A: Yes.  In fact, this is one of the reasons that the tool was created.  The tool and repository of workloads are intended to be used as a way to compare drive and system performance, as well as tune software for real-world conditions.

Q: How are you tracking compressibility & duplication if the user does not turn on compression or dedupe?

A: The user must turn on compression or duplication at the beginning of the capture to see these metrics.

Q: An end user can readily use this to see what their real world workload looks like.  But, how could an SSD vendor mimic the real world workload or get a more “realworld-like” workload for use in common benchmarking tools like FIO & Sysbench?

A: The benchmarking tools mentioned are synthetic workloads, and write a predictable stream to and from the drive.  IO Captures ideally are run as a replay test that recreates the sequence of changing IO Stream combinations and Queue Depths observed during the capture.  While the Calypso toolset can do this automatically, free benchmark tools like FIO and sysbench may not be able to change QDs and IO Stream combinations from step to step in a test script.  However, the IO Capture will also provide a cumulative workload that list the dominant IO Streams and their percentage of occurrence.  This list of dominant IO Streams can be used with fio or sysbench to create a synthetic composite IO stream workload.

Q: Is it possible to use the tool to track CPU State such as IOWAIT or AWAIT based on the various streams?

A: Yes, IO Captures contain statistics on CPU usage such as CPU System Usage %, CPU IO Wait, CPU User usage, etc.

Q: Can we get more explanation of demand intensity and comparison to queue depth?

A: Demand Intensity (DI) is used to refer to the outstanding IOs at a given level of the software/hardware stack.  It may be referred to simply as the outstanding Queue Depth (QD) or as the number of outstanding Thread Count (TC) and QD.  The relevance of TC depends on where in the stack you are measuring the DI.  User QD varies from level to level and depends on what each layer of abstraction is doing.  Usually, focus is paid to the IO Scheduler and the total outstanding IOs at the block IO level.  Regardless of nomenclature, it is important to understand the DI as your workload traverses the IO Stack and to be able to minimize bottlenecks due to high DI.

Q: In these RWSW application traces do these include non-media command percentages such as identify and read log page (SMART), sleep states, etc.?  Depending on the storage interface and firmware this can adversely affect performance/QoS.

A: IO Capture metrics are the IO Streams at the logical storage level and thus do not include protocol level commands.  Non performance IO commands such as TRIMs can be recorded, and SMART logs can be tracked if access to the physical storage is provided.

Q: Isn’t latency a key performance metric for these workloads so collecting only 2 minute burst might not show latency anomalies?

A: IO Captures average the statistics over a selected time window.  Each individual IO Stream and its metrics are recorded and tabulated on a table but the time window average is what is displayed on the IO Stream map.  Of course, the min and max Response times over the 2 minute window are displayed, but the individual IO latencies are not displayed.  In order to track IO Bursts, the time window resolution should be set to a narrow time range, such as 100 mS or less, in order to distinguish IO Bursts and Host Idle times.

Your Questions Answered – Now You Can Be a Part of the Real World Workload Revolution!

The SNIA Solid State Storage Initiative would like to thank everyone who attended our webcast: How To Be Part of the Real World Workload Revolution.  If you haven’t seen it yet, you can view the on demand version here.  You can find the slides here. Eden Kim and Jim Fister led a discussion on the testmyworkload (TMW) tool and data repository, discussing how a collection of real-world workload data captures can revolutionize design and configuration of hardware, software and systems for the industry.   A new SNIA white paper available in both English and Chinese authored by Eden Kim, with an introduction by Tom Coughlin of Coughlin Associates and Jim Handy of Objective Analysis, discusses how we can all benefit by sharing traces of our digital workloads through the SNIA SSSI Real-World Workload Capture program. In an environment where workloads are becoming more complex — and the choices of hardware configuration for solid-state storage are growing — the opportunity to better understand the characteristics of data transfers to and from the storage systems is critical.  By sharing real-world workloads on the Test My Workload repository, the industry can benefit overall in design and development at every level from SSD development to system configuration in the datacenter. There were several questions asked in and after the webcast.  Here are some of the answers.  Read More

SNIA’s Self-contained Information Retention Format (SIRF) v1.0 Published as an ISO Standard

Simona Rabinovici-Cohen
IBM Research – Haifa

The SNIA standard for a logical container format called the Self-contained Information Retention Format (SIRF) v1.0 has now been published as an ISO standard thanks to the diligence and hard work of SNIA’s Long Term Retention Technical Work Group (LTR TWG).This new ISO standard (ISO/IEC 23681:2019) enables long-term hard disk, cloud, and tape-based containers a way to effectively and efficiently preserve and secure digital information for many decades, even with the ever-changing technology landscape.

The demand for digital data preservation has increased in recent years. Maintaining a large amount of data for long periods of time (months, years, decades, or even forever) becomes even more important given government regulations such as HIPAA, Sarbanes-Oxley, OSHA, and many others that define specific preservation periods for critical records.

The SIRF standard addresses the technical challenges of long-term digital information retention & preservation for both physical and logical preservation. It is a storage container of digital preservation objects that provides a catalog with metadata related to the entire contents of the container, individual objects, and their relationships. This standardized metadata help interpret the preservation objects in the future. Read More

SNIA at Flash Memory Summit 2019 – Your Guide Here!

SNIA technical work and education advances will play a prominent role in the program at the 2019 Flash Memory Summit, August 5-8, 2019, in Santa Clara, CA.  Over 40 speakers will present on key standards activities and education initiatives, including the first ever FMS Persistent Memory Hackathon hosted by SNIA.  Check out your favorite technology (or all), and learn what SNIA is doing in these sessions:

SNIA-At-A-Glance

  • •SNIA Solid State Storage Reception
    Monday, August 5, 5:30 pm, Room 209/210
  • •SNIA Standards mainstage presentation by Michael Oros, SNIA Executive Director
    Tuesday, August 6, 2:50 pm, Mission City Ballroom
  • •Beer and Pizza with SNIA Experts on Persistent Memory/NVDIMM, Remote Persistent Memory/Open Fabrics, SNIA Swordfish, and more
    Tuesday, August 6, 7:15 pm – 9:00 pm, Ballrooms A-C
  • •SNIA Solid State Storage Initiative booth #820 featuring Persistent Memory demos and Performance, Computational Storage, and SNIA Swordfish discussions
    Tuesday, August 6, 4:00 pm – 7:00 pm; Wednesday August 7, Noon to 7 pm; and Thursday, August 8, 10:00 am – 2:30 pm, Exhibit Hall

Persistent Memory

  • SNIA Persistent Memory Programming Tutorial and Introduction to the FMS Persistent Memory Hackathon hosted by SNIA
    Learn how programming persistent memory works and get started on your own “hacks”
    Monday, August 5, 1:00 p.m. – 5:00 p.m, Room 209/210
  • •Persistent Memory Hackathon hosted by SNIA
    Bring your laptop and drop by anytime over the two days. SNIA persistent memory experts will support software developers in a live coding exercise to better understand the various tiers and modes of persistent memory and explore existing best practices.
    Tuesday, August 6 and Wednesday August 7, 8:30 am – 7:00 pm, Great America Ballroom Foyer
  • •Persistent Memory Track sessions sponsored by SNIA, JEDEC, and Open Fabrics Alliance
    See experts speak on Advances in Persistent Memory and PM Software and Applications in sessions PMEM-101-1 and PMEM-102-1
    Tuesday, August 6, 8:30 am – 10:50 am in Ballroom E and 3:40 pm – 6:00 pm, in Great America Ballroom J
  • •Persistent Memory Track sessions sponsored by SNIA, JEDEC, and Open Fabrics Alliance
    The track continues with sessions on Remote Persistent Memory and the latest research in the field in sessions PMEM-201-1 and PMEM-202-1
    Wednesday, August 7, 8:30 am – 10:50 am and 3:20 pm – 5:45 pm, Great America Meeting Room 3

Computational Storage

  • •Don’t miss the first ever Computational Storage track at FMS. This SNIA sponsored day features expert presentations and panels on Controllers and Technology, Deploying Solutions, Implementation Methods and Applications.(COMP-301A-1; COMP-301B-1; COMP-302A-1; COMP-302B-1)
    Thursday, August 8, 8:30 am – 10:50 am and 3:20 pm – 5:45 pm, in Ballroom A

Form Factors

  • •Learn what the SFF TA Technical Work Group has been doing in the session New Enterprise and Data Center SSD Form Factors (SSDS-201B-1)
    Wednesday, August 7, 9:45 am -10:50 am, in Great America Ballroom K

SNIA Swordfish

  • •Hear an update on Storage Management with Swordfish APIs for Open-Channel SSDs in session SOFT-201-1
    Wednesday, August 7, 9:45 am -10:50 am, in Ballroom F

Object Drives

  • •Learn about Standardization for a Key Value Interface Underway at NVM Express and SNIA in session NVME-201-1
    Wednesday, August 7,8:30 am – 9:35 am, in Great America Meeting Room 2

SNIA at Flash Memory Summit 2019 – Your Guide Here!

SNIA technical work and education advances will play a prominent role in the program at the 2019 Flash Memory Summit, August 5-8, 2019, in Santa Clara, CA.  Over 40 speakers will present on key standards activities and education initiatives, including the first ever FMS Persistent Memory Hackathon hosted by SNIA.  Check out your favorite technology (or all), and learn what SNIA is doing in these sessions: SNIA-At-A-Glance
  • •SNIA Solid State Storage Reception Monday, August 5, 5:30 pm, Room 209/210
  • •SNIA Standards mainstage presentation by Michael Oros, SNIA Executive Director Tuesday, August 6, 2:50 pm, Mission City Ballroom
  • •Beer and Pizza with SNIA Experts on Persistent Memory/NVDIMM, Remote Persistent Memory/Open Fabrics, SNIA Swordfish, and more Tuesday, August 6, 7:15 pm – 9:00 pm, Ballrooms A-C
  • •SNIA Solid State Storage Initiative booth #820 featuring Persistent Memory demos and Performance, Computational Storage, and SNIA Swordfish discussions Tuesday, August 6, 4:00 pm – 7:00 pm; Wednesday August 7, Noon to 7 pm; and Thursday, August 8, 10:00 am – 2:30 pm, Exhibit Hall
Persistent Memory Read More

Storage Congestion on the Network Q&A

As more storage traffic traverses the network, the risk of congestion leading to higher-than-expected latencies and lower-than expected throughput has become common. That’s why the SNIA Networking Storage Forum (NSF) hosted a live webcast earlier this month, Introduction to Incast, Head of Line Blocking, and Congestion Management. In this webcast (which is now available on-demand), our SNIA experts discussed how Ethernet, Fibre Channel and InfiniBand each handles increased traffic. The audience at the live event asked some great questions, as promised, here are answers to them all. Q. How many IP switch vendors today support Data Center TCP (DCTCP)? Read More

SNIA LTFS Format – New Version with Improved Capacity Efficiency

The SNIA Linear Tape File System (LTFS) Technical Work Group (TWG) is excited to announce that the new version of LTFS Format Specification has just been approved.  LTFS provides an industry standard format for recording data on modern magnetic tape. LTFS is a file system that allows those stored files to be accessed in a similar fashion to those on disk or removable flash drives.

The SNIA standard, also known as an ISO standard ISO/IEC 20919:2016, defines the LTFS Format requirements for interchanged media that claims LTFS compliance. Those requirements are specified as the size and sequence of data blocks and file marks on the media, the content and form of special data constructs (the LTFS Label and LTFS Index), and the content of the partition labels and use of MAM parameters.

The data content (not the physical media) of the LTFS format shall be interchangeable among all data storage systems claiming conformance to this format. Physical media interchange is dependent on compatibility of physical media and the media access devices in use.

SNIA on Storage sat down with Takeshi Ishimoto, Co-Chair of the SNIA LTFS Technical Work Group, to learn what it all means.

Q. What is this standard all about? Read More