SNIA Storage Developer Conference-The Knowledge Continues

SNIA’s 18th Storage Developer Conference is officially a success, with 124 general and breakout sessions;  Cloud Interoperability, Kinetiplugfest 5c Storage, and SMB3 plugfests; ten Birds-of-a-Feather Sessions, and amazing networking among 450+ attendees.  Sessions on NVMe over Fabrics won the title of most attended, but Persistent Memory, Object Storage, and Performance were right behind.  Many thanks to SDC 2016 Sponsors, who engaged attendees in exciting technology discussions.

For those not familiar with SDC, this technical industry event is designed for a variety of storage technologists at various levels from developers to architects to product managers and more.  And, true to SNIA’s commitment to educating the industry on current and future disruptive technologies, SDC content is now available to all – whether you attended or not – for download and viewing.

20160919_120059You’ll want to stream keynotes from Citigroup, Toshiba, DSSD, Los Alamos National Labs, Broadcom, Microsemi, and Intel – they’re available now on demand on SNIA’s YouTube channel, SNIAVideo.

All SDC presentations are now available for download; and over the next few months, you can continue to download SDC podcasts which combine audio and slides. The first podcast from SDC 2016 – on hyperscaler (as well as all 2015 SDC Podcasts) are available here, and more will be available in the coming weeks.

SNIA thanks all its members and colleagues who contributed to make SDC a success! A special thanks goes out to the SNIA Technical Council, a select group of acknowledged industry experts who work to guide SNIA technical efforts. In addition to driving the agenda and content for SDC, the Technical Council oversees and manages SNIA Technical Work Groups, reviews architectures submitted by Work Groups, and is the SNIA’s technical liaison to standards organizations. Learn more about these visionary leaders at http://www.snia.org/about/organization/tech_council.

And finally, don’t forget to mark your calendars now for SDC 2017 – September 11-14, 2017, again at the Hyatt Regency Santa Clara. Watch for the Call for Presentations to open in February 2017.

Will Ethernet storage move to 10GBASE-T?

10GBASE-T is a technology that runs 10Gb Ethernet over familiar Category 6/6a cables for distances up to 100m and is terminated by the ubiquitous RJ-45 jack. Till now, most datacenter copper cabling has been special Direct Attach cables for distances up to 7m terminated by an SFP+ connector. To work, data center switches need matching SFP+ connectors, meaning new switches are required for any data center making the move from 1GbE to 10GbE. 10GBASE-T is generating a lot of interest in 2012 as the first single-chip implementations at lower power (fanless) and lower cost (competitive with Direct Attach NICs) come to market. A data center manager now has an evolutionary way to incorporate 10GbE that exploits the cabling and switches already in place. The cost savings from preserving existing cabling alone can be tremendous.

But is 10GBASE-T up to the task of carrying storage traffic? The bit-error rate technical tests of 10GBASE-T look promising. 10GBASE-T is meeting the 10-12 BER requirements of all the relevant Ethernet and storage specifications. We expect NAS and iSCSI to move rapidly to take advantage of the deployment cost savings offered by 10GBASE-T. Admins responsible for NAS and iSCSI storage over Ethernet should find 10GBASE-T meets their reliability expectations.

But what about Fibre Channel over Ethernet (FCoE)? Note that storage admins responsible for FC and/or FCoE are among the most risk-adverse people on the planet. They especially need to be confident that any new technology, no matter how compelling its benefits, doesn’t appreciably increase the risk of data loss. For this reason, they are adopting FCoE very slowly, though the economics make FCoE very compelling. So a broad market transition to FCoE over 10GBASE-T is likely to take some time regardless.

Cisco announced in June 2012 a new 5000-series Nexus switch supporting up to 68 ports of “FCoE-ready” 10GBASE-T. Cisco has made the investment to support storage protocols, including FCoE, over 10GBASE-T in this switch and is committed to working with the industry to do the testing to prove its robustness. In fact, some eager end-users are getting ahead of this testing, and, based on results from their own stress tests, moving now to storage over 10GBASE-T deployments, including FCoE.

Every major speed and capabilities transition for Ethernet has engendered skeptics. The transition to running storage protocols over 10GBASE-T is no different. General consensus is that the “jury is out” for FCoE over 10GBASE-T. The interoperability and stress testing to prove reliability isn’t complete. And storage admins will generally want to see reports from multiple deployments before they move. But the long-term prognosis for storage – NAS, iSCSI, and FCoE — over 10GBASE-T is looking very encouraging.

Will Ethernet storage move to 10GBASE-T?

10GBASE-T is a technology that runs 10Gb Ethernet over familiar Category 6/6a cables for distances up to 100m and is terminated by the ubiquitous RJ-45 jack. Till now, most datacenter copper cabling has been special Direct Attach cables for distances up to 7m terminated by an SFP+ connector. To work, data center switches need matching SFP+ connectors, meaning new switches are required for any data center making the move from 1GbE to 10GbE. 10GBASE-T is generating a lot of interest in 2012 as the first single-chip implementations at lower power (fanless) and lower cost (competitive with Direct Attach NICs) come to market. A data center manager now has an evolutionary way to incorporate 10GbE that exploits the cabling and switches already in place. The cost savings from preserving existing cabling alone can be tremendous.

But is 10GBASE-T up to the task of carrying storage traffic? The bit-error rate technical tests of 10GBASE-T look promising. 10GBASE-T is meeting the 10-12 BER requirements of all the relevant Ethernet and storage specifications. We expect NAS and iSCSI to move rapidly to take advantage of the deployment cost savings offered by 10GBASE-T. Admins responsible for NAS and iSCSI storage over Ethernet should find 10GBASE-T meets their reliability expectations.

But what about Fibre Channel over Ethernet (FCoE)? Note that storage admins responsible for FC and/or FCoE are among the most risk-adverse people on the planet. They especially need to be confident that any new technology, no matter how compelling its benefits, doesn’t appreciably increase the risk of data loss. For this reason, they are adopting FCoE very slowly, though the economics make FCoE very compelling. So a broad market transition to FCoE over 10GBASE-T is likely to take some time regardless.

Cisco announced in June 2012 a new 5000-series Nexus switch supporting up to 68 ports of “FCoE-ready” 10GBASE-T. Cisco has made the investment to support storage protocols, including FCoE, over 10GBASE-T in this switch and is committed to working with the industry to do the testing to prove its robustness. In fact, some eager end-users are getting ahead of this testing, and, based on results from their own stress tests, moving now to storage over 10GBASE-T deployments, including FCoE.

Every major speed and capabilities transition for Ethernet has engendered skeptics. The transition to running storage protocols over 10GBASE-T is no different. General consensus is that the “jury is out” for FCoE over 10GBASE-T. The interoperability and stress testing to prove reliability isn’t complete. And storage admins will generally want to see reports from multiple deployments before they move. But the long-term prognosis for storage – NAS, iSCSI, and FCoE — over 10GBASE-T is looking very encouraging.