Three Truths About Hard Drives and SSDs

An examination of the claim that flash will replace hard drives in the data center

“Hard drives will soon be a thing of the past.”

“The data center of the future is all-flash.”

Such predictions foretelling hard drives’ demise, perennially uttered by a few vocal proponents of flash-only technology, have not aged well.

Without question, flash storage is well-suited to support applications that require high-performance and speed. And flash revenue is growing, as is all-flash-array (AFA) revenue. But not at the expense of hard drives.

We are living in an era where the ubiquity of the cloud and the emergence of AI use cases have driven up the value of massive data sets. Hard drives, which today store by far the majority of the world’s exabytes (EB), are more indispensable to data center operators than ever. Industry analysts expect hard drives to be the primary beneficiary of continued EB growth, especially in enterprise and large cloud data centers—where the vast majority of the world’s data sets reside. Read More

Your Questions Answered on Non-Volatile DIMMs

  by Arthur Sainio, SNIA NVDIMM SIG Co-Chair, SMART Modular SNIA’s Non-Volatile DIMM (NVDIMM) Special Interest Group (SIG) had a tremendous response to their most recent webcast:  NVDIMM:  Applications are Here!  You can view the webcast on demand. Viewers had many questions during the webcast.  In this blog, the NVDIMM SIG answers those questions and shares the SIG’s knowledge of NVDIMM technology. Have a question?  Send it to nvdimmsigchair@snia.org. 1. What about 3DXpoint, how will this technology impact the market? Read More

How Many IOPS? Users Share Their 2017 Storage Performance Needs

New on the Solid State Storage website is a whitepaper from analysts Tom Coughlin of Coughlin Associates and Jim Handy of Objective Analysis which details what IT manager requirements are for storage performance. The paper examines how requirements have changed over a four-year period for a range of applications, including databases, online transaction processing, cloud and storage services, and scientific and engineering computing.  Read More

Attend Live – or Live Stream – SNIA’s Persistent Memory Summit January 18

by Marty Foltyn

SNIA’s Persistent Memory Summit makes its fifth annual appearance in Silicon Valley next Wednesday, January 18, and if you are in the vicinity of the Westin San Jose, you owe it to yourself to check it out. PMSummitLogo (2)

SNIA is well known for its technology-focused, no vendor-hype conferences, and this one-day event will feature 12 presentations and two panels that will “level set” the discussion, review persistent memory usage, describe applications incorporating PM available today, discuss the infrastructure and implementation, and provide a vision of the “next generation” of persistent memory.

You’ll meet speakers from SNIA member companies Intel, Micron, Microsemi, VMware, Red Hat, Microsoft, AgigA Tech, Western Digital, and Spin Transfer.  Live demonstrations of persistent memory solutions will be featured from Summit underwriters Intel and the SNIA Solid State Storage Initiative, and Summit sponsors Microsemi, VMware, AgigA Tech, SMART Modular, and Spin Transfer.

Registration is complimentary but limited  -visit http://www.snia.org/pm-summit for the complete agenda and how to sign up.  And, if your travels don’t permit you to attend in person, the Persistent Memory Summit will be live-streamed on the SNIAvideo channel at https://www.youtube.com/user/SNIAVideo.

The Changing World of SNIA Technical Work – A Conversation with Technical Council Chair Mark Carlson

carlson_mark_resizeMark Carlson is the current Chair of the SNIA Technical Council (TC). Mark has been a SNIA member and volunteer for over 18 years, and also wears many other SNIA hats.   Recently, SNIA on Storage sat down with Mark to discuss his first nine months as the TC Chair and his views on the industry.

SNIA on Storage (SoS):  Within SNIA, what is the most important activity of the SNIA Technical Council?

Mark Carlson (MC): The SNIA Technical Council works to coordinate and approve the technical work going on within SNIA. This includes both SNIA Architecture (standards) and SNIA Software. The  work is conducted within 13 SNIA Technical Work Groups (TWGs).  The members of the TC are elected from the voting companies of SNIA, and the Council also includes appointed members and advisors as well as SNIA regional affiliate advisors. SNIA_Technology_Infographic_4

SoS:  What has been your focus this first nine months of 2016?   

MC: The SNIA Technical Council has overseen a major effort to integrate a new standard organization into SNIA.  The creation of the new SNIA SFF Technology Affiliate (TA) Technical Work Group has brought in a very successful group of folks and standards related to storage connectors and transceivers. This work group, formed in June 2016, carries forth the longstanding SFF Committee work efforts that has operated since 1990 until mid-2016.  In 2016, SFF Committee leaders transitioned the organizational stewardship to SNIA, to operate under a special membership class named Technology Affiliate, while retaining the long standing technical focus on specifications in a similar fashion as all SNIA TWGs do.

SoS:  What changes did SNIA implement to form the new Technology Affiliate membership class and why?

MC: The SNIA Policy and Procedures were changed to account for this new type of membership.  Companies can now join an Affiliate TWG without having to join SNIA as a US member.  Current SNIA members who want to participate in a Technology Affiliate like SFF can join a Technology Affiliate and pay the separate dues.  The SFF was a catalyst – we saw an organization looking for a new home as its membership evolved and its leadership transitioned.  They felt SNIA could be this home but we needed to complete some activities to make it easier for them to seamlessly continue their work.   The SFF is now fully active within SNIA and also working closely with T10 and T11, groups that SNIA members have long participated in.

SoS:  Is forming this Technology Affiliate a one-time activity?

MC: Definitely not.  The SNIA is actively seeking organizations who are looking for a structure that SNIA provides with IP policies, established infrastructure to conduct their work, and 160+ leading companies with volunteers who know storage and networking technology.

SoC:  What are some of the customer pain points you see in the industry?

MC: Critical pain points the TC has started to address with new TWGs over the last 24 months include: performance of solid state storage arrays, where the SNIA Solid State Storage Systems (S4) TWG is working to identify, develop, and coordinate system performance standards for solid state storage systems; and object drives, where work is being done by the Object Drive TWG to identify, develop, and coordinate standards for object drives operating as storage nodes in scale out storage solutions.  With the number of different future disk drive interfaces emerging that add value from external storage to in-storage compute, we want to make sure they can be managed at scale and are interoperable.TC org chart 2016

SoS:  What’s upcoming for the next six months?

MC: The TC is currently working on a white paper to address data center drive requirements and the features and existing interface standards that satisfy some of those requirements.  Of course, not all the solutions to these requirements will come from SNIA, but we think SNIA is in a unique position to bring in the data center customers that need these new features and work with the drive vendors to prototype solutions that then make their way into other standards efforts.  Features that are targeted at the NVM Express, T10, and T13 committees would be coordinated with these customers.

SoS:  Can non-members get involved with SNIA?

MC:   Until very recently, if a company wanted to contribute to a software project within SNIA, they had to become a member. This was limiting to the community, and cut off contributions from those who were using the code, so SNIA has developed a convenient Contributor License Agreement (CLA) for contributions to individual projects.  This allows external contributions but does not change the software licensing. The CLA is compatible with the IP protections that the SNIA IP Policy provides to our members.  Our hope is that this will create a broader community of contributors to a more open SNIA, and facilitate open source project development even more.

SoS:  Will you be onsite for the upcoming SNIA Storage Developer Conference (SDC)?

MC: Absolutely!  I look forward to meeting SNIA members and colleagues September 19-22 at the Hyatt Regency Santa Clara.  We have a great agenda, now online, that the TC has developed for this, our 18th conference, and registration is now open.  SDC brings in more than 400 of the leading storage software and hardware developers, storage product and solution architects, product managers, storage product quality assurance engineers, product line CTOs, storage product customer support engineers, and in–house IT development staff from around the world.  If technical professionals are not familiar with the education and knowledge that SDC can provide, a great way to get a taste is to check out the SDC Podcasts now posted, and the new ones that will appear leading up to SDC 2016.

Your Questions Answered on NVDIMM

The recent NVDIMM webcasts on the SNIA BrightTALK Channel sparked many questions from the almost 1,000 viewers who have watched it live or downloaded the on-demand cast. Now,  NVDIMM SIG Chairs Arthurnvdimm blog Sainio and Jeff Chang answer 35 of them in this blog.  Did you miss the live broadcasts? No worries, you can view NVDIMM and other webcasts on the SNIA webcast channel https://www.brighttalk.com/channel/663/snia-webcasts.

FUTURES QUESTIONS

What timeframe do you see server hardware, OS, and applications readily adopting/supporting/recognizing NVDIMMs?

DDR4 server and storage platforms are ready now. There are many off-the shelf server and/or storage motherboards that support NVDIMM-N.

Linux version 4.2 and beyond has native support for NVDIMMs. All the necessary drivers are supported in the OS.

NVDIMM adoption is in progress now.

Technical Preview 5 of Windows Server 2016 has NVDIMM-N support
 

How, if at all, does the positioning of NVDIMM-F change after the eventual introduction of new NVM technologies?

If 3DXP is successful it will likely to have a big impact on NVDIMM-F. 3DXP could be seen as an advanced version of a NVDIMM-F product. It sits directly on the DDR4 bus and is byte addressable.

NVDIMM-F products have the challenge of making them BYTE ADDRESSBLE, depending on what kind of persistent media is used.

If NAND flash is used, it would take a lot of techniques and resources to make such a product BYTE ADDRESSABLE.

On the other hand, if the new NVM technologies bring out persistent media that are BYTE ADDRESSABLE then the NVDIMM-F could easily use them for their backend.
How does NVDIMM-N compare to Intel’s 3DXPoint technology?

At this point there is limited technical information available on 3DXP devices.

When the specifications become available the NVDIMM SIG can create a comparison table.

NVDIMM-N products are available now. 3DXP-based products are planned for 2017, 2018. Theoretically 3DXP devices could be used on NVDIMM-N type modules

 

 

 

PERFORMANCE AND ENDURANCE QUESTIONS

What are the NVDIMM performance and endurance requirements?

NVDIMM-N is no different from a RDIMM under normal operating conditions. The endurance of the Flash or NVM technology used on the NVDIMM-N is not a critical factor since it is only used for backup.

NVDIMM-F would depend on various factors: (1) is the backend going to be NAND Flash or some other entity? (2) What kind of access pattern is going to be done by the application? The performance must be at least same as that of NVDIMM-N.

Are there endurance requirements for NVDIMM-F? Won’t the flash wear out quickly when used as memory?

Yes, the aspect of Flash being used as a RANDOM access device with MEMORY access characteristics would definitely have an impact on the endurance.
NVDIMM-F – Doesn’t the performance limitations of the NAND vs. DRAM effect the application?

NAND Flash would never hit the performance requirements of the DRAM when seen as an entity to entity comparison. But, in the whole perspective of a wider solution, the data path of DRAM data -> Persistence Data in a traditional model would have more delays contributed by a good number of software layers involved in making the data persistent versus, in the NVDIMM-F the data that is instantly persistent — for just a short term additional latency.
Is there extra heat being generated….does it need any other cooling (NVDIMM-F, NVDIMM-N)

No
In general, our testing of NVDIMM-F vs PCIe based SSDs has not shown the expected value of NVDIMMs.  The PCIe based NVMe storage still outperforms the NVDIMMs.

TBD
What is the amount of overhead that NVDIMMs are adding on CPUs?

None at normal operation
What can you say about the time required typically to charge the supercaps?  Is the application aware of that status before charge is complete?

Approximately two minutes depending on the density of the NVDIMM and the vendor.

The NVDIMM will not be ready because the charging status and in turn the system BIOS will wait; until it times out if the NVDIMM is not functioning.

USE QUESTIONS

What will happen if a system crashes then comes back before the NVDIMM finishes backup? How the OS know what to continue as the state in the register/L1/L2/L3 cache is already lost?

When system comes back up, it will check if there is valid data backed up in the NVDIMM. If yes, backed up data will be restored first before the BIOS sets up the system.

The OS can’t depend on the contents of the L1/L2/L3 cache. Applications must do I/O fencing, use commit points, etc. to guarantee data consistency.

Power supply should be able to hold power for at least 1ms after the warning of AC power loss.

Is there garbage collection on NVDIMMs?

This depends on individual vendors. NVDIMM-N may have overprovisioning and wear levering management for the NAND Flash.

Garbage collection really only makes sense for NVDIMM-F.
How is byte addressing enabled for NAND storage?

By default, the NAND storage can be addressed only through the BLOCK mode addressing. If BYTE addressability is desired, then the DDR memory at the front must provide sophisticated CACHING TECHNIQUES to trick the Host Memory Controller in to thinking that it is actually accessing a larger capacity DDR memory.
Is the restore command issued over the I2C bus?  Is that also known as the SMBus?

Yes, Yes
Could NVDIMM-F products be used as both storage and memory within the same server?

NVDIMM-F is by definition only block storage. NVDIMM-P is both (block) storage and memory.

 

COMPATIBILITY QUESTIONS

 

Is NVDIMM-N support built into the OS or do the NVDIMM vendors need to provide drivers? What OS’s (Windows version, Linux kernel version) have support?

In Linux, right from 4.2 version of the Kernel, the generic NVDIMM-N support is available.

All the necessary drivers are provided in the OS itself.

Regarding the Linux distributions, only Fedora and Ubuntu have upgraded themselves to the 4.x kernel.

The crucial aspect is, the BIOS/MRC support needed for the vendor specific NVDIMM-N to get exposed to the Host OS.

MS Windows has OS support – need to download.
What OS support is available for NVDIMM-F? I’m assuming some sort of drivers is required.

Diablo has said they worked the BIOS vendors to enable their Memory1 product. We need to check with them.

For other NVDIMM-F vendors they would likely require drivers.

As of now no native OS support is available.
Will NVDIMMs work with typical Intel servers that are 2-3 years old?   What are the hardware requirements?

The depends on the CPU. For Haswell, Grantley, Broadwell, and Purley the NVDIMM-N are and/or will be supported

The hardware requires that the CPLD, SAVE, and ADR signals are present

Is RDMA compatible with NVDIMM-F or NVDIMM-N?

The RDMA (Remote Direct Memory Access) is not available by default for NVDIMM-N and NVDIMM-F.

A software layer/extension needs to be written to accommodate that. Works are in progress by the PMEM committee (www.pmem.io) to make the RDMA feature available transparently for the applications in the future.

SNIA Reference: http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf
What’s the highest capacity that an NVDIMM-N can support?

Currently 8GB and 16GB but this depends on individual vendor’s roadmaps.

 

COST QUESTIONS

What is the NVDIMM cost going to look like compared to other flash type storage options?

This relates directly to what types and quantizes of Flash, DRAM, controllers and other components are used for each type.

 

MISCELLANEOUS QUESTIONS

How many vendors offer NVDIMM products?

AgigA Tech, Diablo, Hynix, Micron, Netlist, PNY, SMART, and Viking Technology are among the vendors offering NVDIMM products today.

 

Is encryption on the NVDIMM handled by the controller on the NVDIMM or the OS?

Encryption on the NVDIMM is under discussion at JEDEC. There has been no standard encryption method adopted yet.

If the OS encrypts data in memory the contents of the NVDIMM backup would be encrypted eliminating the need for the NVDIMM to perform encryption. Although because of the performance penalty of OS encryption, NVDIMM encryption is being considered by NVDIMM vendors.
Are memory operations what is known as DAX?

DAX means Direct Access and is the optimization used in the modern file systems – particularly EXT4 – to eliminate the Kernel Cache for holding the write data. With no intermediate cache buffers, the write operations go directly to the media. This makes the writes persistent as soon as they are committed.

Can you give some practical examples of where you would use NVDIMM-N, -F, and –P?

NVDIMM-N: load/store byte access for journaling, tiering, caching, write buffering and metadata storage

NVDIMM-F: block access for in-memory database (moving NAND to the memory channel eliminates traditional HDD/SSD SAS/PCIe link transfer, driver, and software overhead)

NVDIMM-P: can be used either NVDIMM-N or –F applications
Are reads and writes all the same latency for NVDIMM-F?

The answer depends on what kind of persistent layer is used.   If it is the NAND flash, then the random writes would have higher latencies when compared to the reads. If the 3D XPoint kind of persistent layer is used, it might not be that big of a difference.

 

I have interest in the NVDIMMs being used as a replacement for SSD and concerns about clearing cache (including credentials) stored as data moves from NVM to PM on an end user device

The NVDIMM-N uses serialization and fencing with Intel instructions to guarantee data is in the NVDIMM before a power failure and ADR.

 

I am interested in how many banks of NVDIMMs can be added to create a very large SSD replacement in a server storage environment.

NVDIMMs are added to a system in memory module slots. The current maximum density is 16GB or 32GB. Server motherboards may have 16 or 24 slots. If 8 of these slots have 16GB NVDIMMs that should be like a 96GB SSD.
What are the environmental requirements for NVDIMMs (power, cooling, etc.)?

There are some components on NVDIMMs that have a lower operating temperature than RDIMMs like flash and FPGA devices. Refer to each vendor’s data sheet for more information. Backup Energy Sources based on ultracapacitors require health monitoring and a controlled thermal environment to ensure an extended product life.
How about data-at-rest protection management? Is the data in NVDIMM protected/encrypted? Complying with TCG and FIPS seems very challenging. What are the plans to align with these?

As of today, encryption has not been standardized by JEDEC. It is currently up to each NVDIMM vendor whether or not to provide encryption..

 

Could you explain the relationship between the NVDIMM and the IO stack?

In the PMEM mode, the Kernel presents the NVDIMM as a reserved memory, directly accessible by the Host Memory Controller.

In the Block Mode, the Kernel driver presents the NVDIMM as a block device to the IO Block Layer.
With NVDIMMs the data can be in memory or storage. How is the data fragmentation managed?

The NVDIMM-N is managed as regular memory. The same memory allocation fragmentation issues and handling apply. The NVDIMM-F behaves like an SSD. Fragmentation issues on an NVDIMM-F are handled like an SSD with garbage collection algorithms.

 

Is there a plan to support PI type data protection for NVDIMM data? If not, achieving E2E data protection cannot be attained.

As of today, encryption has not been standardized by JEDEC. It is currently up to each NVDIMM vendor whether or not to provide encryption.

 

Since NVDIMM is still slower than DRAM so we still need DRAM in the system? We cannot get rid of DRAM yet?

With NVDIMM-N DRAM is still being used. NVDIMM-N operates at the speed of standard RDIMM

With NVDIMM-F modules, DRAM memory modules are still needed in the system.

With NVDIMM-P modules, DRAM memory modules are still needed in the system.
Can you use NVMe over ethernet?

NVMe over Fabrics is under discussion within SNIA http://www.snia.org/sites/default/files/SDC15_presentations/networking/WaelNoureddine_Implementing_%20NVMe_revision.pdf

 

SNIA’s Persistent Memory Education To Be Featured at Open Server Summit 2016

sssi boothIf you are in Silicon Valley or the Bay Area this week, SNIA welcomes you to join them and the Solid State Storage Initiative April 13-14 at the Santa Clara Convention Center for Open Server Summit 2016, the industry’s premier event that focuses on the design of next- generation servers with topics on data center efficiency, SSDs, core OS, cloud server design, the future of open server and open storage, and other efforts toward combining industry-standard hardware with open-source software.

The SNIA NVDIMM Special Interest Group is featured at OSS 2016, and will host a panel Thursday April 14 on NVDIMM technology, moderated by Bill Gervasi of JEDEC and featuring SIG members Diablo Technology, Netlist, and SMART Modular. The panel will highlight the latest activities in the three “flavors” of NVDIMM , and offer a perspective on the future of persistent memory in systems. Also, SNIA board member Rob Peglar of Micron Technology will deliver a keynote on April 14, discussing how new persistent memory directions create new approaches for system architects and enable entirely new applications involving enormous data sets and real-time analysis.

SSSI will also be in booth 403 featuring demonstrations by the NVDIMM SIG, discussions on SSD data recovery and erase, and updates on solid state storage performance testing.  SNIA members and colleagues can register for $100 off using the code SNIA at http://www.openserversummit.com.

SNIA’s Solid State Storage Initiative Advances the Industry at Flash Memory Summit

A classic case of SNIA Solid State Storage Initiative (SSSI) member collaboration for industry advancement was on display in the SSSI booth for NVDIMM-N demonstration at the Flash Memory Summit (FMS) 2015. Under the direction of SSSI Chair Jim Ryan and coordinated by NVDIMM SIG co chairs Arthur Sainio and Jeff Chang and TechDev Committee chair Eden Kim, the SSSI was able to update and include NVDIMM-N storage performance in the SSSI marketing collaterals on the Summary Performance Comparison by Storage Class charts.

2015SummaryPerformanceChart.NVDIMM.1200

Five SSSI member companies – AgigA Tech, Calypso, Micron, SMART Modular, and Viking Technology – collaborated over a four week period on the introduction of a new NVDIMM-N storage performance demonstration. While it is rare to have potential competitors collaborate in such a fashion, NVDIMM-N storage represents a new paradigm for super fast, low latency, high IO/watt storage solutions. The NVDIMM-SIG has taken a leadership position by evangelizing the technology and developing the industry infrastructure necessary for large scale deployment.

This collaboration highlighted a classic blend of technical, marketing and industry association cooperation.

In the weeks leading up to FMS, the NVDIMM-SIG planned for an in-booth demonstration of the NVDIMM-N storage modules. To pave the way for universal adoption, the team worked together to dial in the Intel Open Source block IO development driver to meet the standards of the SNIA Performance Test Specification (PTS). An added goal was inclusion of NVDIMM-N modules as a new line item on the Summary Performance Comparison by Storage Class chart which lists PTS performance for various storage technologies. Under the guidance of NVDIMM-SIG, a rush project was instigated to get NVDIMM-N performance data tested to the PTS for the trade show.

Micron took the lead by lending a Supermicro server with Micron NVDIMM-N to Calypso for testing. Calypso then installed CTS test software on the server to allow full testing to the PTS. Viking and SMART Modular contributed by helping dial in the drivers, as well as sending modules from Viking and SMART Modular to cross reference with the Micron modules. The test plan was comprised of several test iterations using single, dual and finally quad modules using each of the vendor contributed modules.

The early single and dual module tests ran into repeatability and stability issues. NVDIMM-SIG consulted with Intel on the nuance of the Intel block IO driver while Calypso continued testing. The team successfully completed a test run that met the PTS steady state requirements on the quad module in time to release data for the show.

We had a solid demonstration at the SNIA SSSI Flash Memory Summit Booth on NVDIMM-N Performance complete with marketing collateral available for review and a handout. NVDIMM-SIG members responded to the many questions and interest in the NVDIMM-N storage technology.

fms booth

“Once again,” said SSSI Chair Jim Ryan, “we can see the value and benefit of SNIA SSSI to its members, the SNIA educational community and the NVDIMM industry. I believe this is a great case study in how we all can contribute and benefit from working within the SSSI for the betterment of individual companies, market development and the Solid State Storage industry at large.” SSSI provides educational and marketing materials free of charge on its public website while SNIA SSSI members may join the NVDIMM-SIG and other SSSI committees. Anyone interested to find out more about the SSSI or any of its many committees can go to the following link http://www.snia.org/sssi.

 

Data Recovery and Selective Erasure of Solid State Storage a New Focus at SNIA

The rise of solid state storage has been incredibly beneficial to users in a variety of industries. Solid state technology presents a more reliable and efficient alternative to traditional storage devices. However, these benefits have not come without unforeseen drawbacks in other areas. For those in the data recovery and data erase industries, for example, solid state storage has presented challenges. The obstacles to data recovery and selective erasure capabilities are not only a problem for those in these industries, but they can also make end users more hesitant to adopt solid state storage technology.

Recently a new Data Recovery and Erase Special Interest Group (SIG) has been formed within the Solid State Storage Initiative (SSSI) within the Storage Networking Industry Association (SNIA). SNIA’s mission is to “lead the storage industry worldwide in developing and promoting standards, technologies and educational services to empower organizations in the management of information.” This fantastic organization has given the Data Recovery and Erase SIG a solid platform on which to build the initiative.

The new group has held a number of introductory open meetings for SNIA members and non-members to promote the group and develop the group’s charter. For its initial meetings, the group sought to recruit both SNIA members and non-members that were key stakeholders in fields related to the SIG. This includes data recovery providers, erase solution providers and solid state storage device manufacturers. Aside from these groups, members of leading standards bodies and major solid state storage device consumers were also included in the group’s initial formation.

The group’s main purpose is to be an open forum of discussion among all key stakeholders. In the past, there have been few opportunities for representatives from different industries to work together, and collaboration had often been on an individual basis rather than as a group. With the formation of this group, members intend to cooperate between industries on a collective basis in order to foster a more constructive dialogue incorporating the opinions and feedback of multiple parties.

During the initial meetings of the Data Recovery and Erase SIG, members agreed on a charter to outline the group’s purpose and goals. The main objective is to foster collaboration among all parties to ensure consumer demands for data recovery and erase services on solid state storage technology can be performed in a cost-effective, timely and fully successful manner

In order to achieve this goal, the group has laid out six steps needed, involving all relevant stakeholders:

  1. Build the business case to support the need for effective data recovery and erase capabilities on solid state technology by using use cases and real examples from end users with these needs.
  2. Create a feedback loop allowing data recovery providers to provide failure information to manufacturers in order to improve product design.
  3. Foster cooperation between solid state manufacturers and data recovery and erase providers to determine what information is necessary to improve capabilities.
  4. Protect sensitive intellectual property shared between data recovery and erase providers and solid state storage manufacturers.
  5. Work with standards bodies to ensure future revisions of their specifications account for capabilities necessary to enable data recovery and erase functionality on solid state storage.
  6. Collaborate with solid state storage manufacturers to incorporate capabilities needed to perform data recovery and erase in product design for future device models.

The success of this special interest group depends not only on the hard work of the current members, but also in a diverse membership base of representatives from different industries. We will be at Flash Memory Summit in booth 820 to meet you in person! Or you can visit our website at www.snia.org/forums/sssi for more information on this new initiative and all solid state storage happenings at SNIA.   If you’re a SNIA member and you’d like to learn more about the Data Recovery/Erase SIG or you think you’d be a good fit for membership, we’d love to speak with you.  Not a SNIA member yet? Email marty.foltyn@snia.org for details on joining.

New SNIA SSSI Webcast May 28 on Persistent Memory Advances

Join the NVDIMM Special Interest Group for an informative SNIA Brighttalk webcast on Persistent Memory Advances:  Solutions with Endurance, Performance & Non-Volatility on Thursday, May 28, 2015 at 12:00 noon Eastern/9:00 am Pacific.  Register at http://www.snia.org/news_events/multimedia#webcasts

Mario Martinez of Netlist, a SNIA SSSI NVDIMM SIG member, will discuss how persistent memory solutions deliver the endurance and performance of DRAM coupled with the non-volatility of Flash. This webinar will also update you on the latest solutions for enterprise server and storage designs, and provide insights into future persistent memory advances. A specific focus will be NVDIMM solutions, with examples from the member companies of the SNIA NVDIMM Special Interest Group.