What is eBPF, and Why Does it Matter for Computational Storage?

Recently, a question came up in the SNIA Computational Storage Special Interest Group on new developments in a technology called eBPF and how they might relate to computational storage. To learn more, SNIA on Storage sat down with Eli Tiomkin, SNIA CS SIG Chair with NGD Systems; Matias Bjørling of Western Digital; Jim Harris of Intel; Dave Landsman of Western Digital; and Oscar Pinto of Samsung. SNIA On Storage (SOS):  The eBPF.io website defines eBPF, extended Berkeley Packet Filter, as a revolutionary technology that can run sandboxed programs in the Linux kernel without changing kernel source code or loading kernel modules. Why is it important? Dave Landsman (DL): eBPF emerged in Linux as a way to do network filtering, and enables the Linux kernel to be programmed.  Intelligence and features can be added to existing layers, and there is no need to add additional layers of complexity. SNIA On Storage (SOS):  What are the elements of eBPF that would be key to computational storage?  Read More

Q&A on Data Movement and Computational Storage

Recently, the SNIA Compute, Memory, and Storage Initiative hosted a live webcast “Data Movement and Computational Storage”, moderated by Jim Fister of The Decision Place with Nidish Kamath of KIOXIA, David McIntyre of Samsung, and Eli Tiomkin of NGD Systems as panelists. We had a great discussion on new ways to look at storage, flexible computer systems, and how to put on your security hat. During our conversation, we answered audience questions, and raised a few of our own!  Check out some of the back-and-forth, and tune in to the entire video for customer use cases and thoughts for the future. Read More

Computational Storage in the Real World

Computational storage has arrived, with real world applications meeting the goal of enabling parallel computation and/or alleviating constraints on existing compute, memory, storage, and I/O.  The SNIA Computational Storage Special Interest Group has gathered examples of computational storage use cases which demonstrate improvements in application performance and infrastructure efficiency through the integration of compute resources either directly with storage or between the host and the storage. First up in the SNIA Computational Storage Demo Series are our SIG member companies Eideticom Communications and NGD Systems. Read More

Cutting Edge Persistent Memory Education – Hear from the Experts!

Most of the US is currently experiencing an epic winter.  So much for 2021 being less interesting than 2020.  Meanwhile, large portions of the world are also still locked down waiting for vaccine production. So much for 2020 ending in 2020.  What, oh what, can possibly take our minds off the boredom? Here’s an idea – what about some education in persistent memory programming?  Read More

Compute Everywhere – Your Questions Answered

Recently, the SNIA Compute, Memory, and Storage Initiative (CMSI) hosted a wide-ranging discussion on the “compute everywhere” continuum.  The panel featured Chipalo Street from Microsoft, Steve Adams from Intel, and Eli Tiomkin from NGD Systems representing both the start-up environment and the SNIA Computational Storage Special Interest Group. We appreciate the many questions asked during the webcast and are pleased to answer them in this Q&A blog. Read More

Take 10 – Watch a Computational Storage Trilogy

We’re all busy these days, and the thought of scheduling even more content to watch can be overwhelming.  Great technical content – especially from the SNIA Educational Library – delivers what you need to know, but often it needs to be consumed in long chunks. Perhaps it’s time to shorten the content so you have more freedom to watch.

With the tremendous interest in computational storage, SNIA is on the forefront of standards development – and education.  The SNIA Computational Storage Special Interest Group (CS SIG) has just produced a video trilogy – informative, packed with detail, and consumable in under 10 minutes!

Read More

Are We at the End of the 2.5-inch Disk Era?

The SNIA Solid State Storage Special Interest Group (SIG) recently updated the Solid State Drive Form Factor page to provide detailed information on dimensions; mechanical, electrical, and connector specifications; and protocols. On our August 4, 2020 SNIA webcast, we will take a detailed look at one of these form factors – Enterprise and Data Center SSD Form Factor (EDSFF) – challenging an expert panel to consider if we are at the end of the 2.5-in disk era. Enterprise and Data Center Form Factor (EFSFF) is designed natively for data center NVMe SSDs to improve thermal, power, performance, and capacity scaling. EDSFF has different variants for flexible and scalable performance, dense storage configurations, general purpose servers, and improved data center TCO.  At the 2020 Open Compute Virtual Summit, OEMs, cloud service providers, hyperscale data center, and SSD vendors showcased products and their vision for how this new family of SSD form factors solves real data challenges. Read More

Your Questions Answered on Persistent Memory Programming

On April 14, the SNIA Compute Memory and Storage Initiative (CMSI) held a webcast asking the question – Do You Wanna Program Persistent Memory? We had some answers in the affirmative – answering the call of the NVDIMM Programming Challenge. The Challenge utilizes a set of systems SNIA provides for the development of applications that take advantage of persistent memory. These systems support persistent memory types that can utilize the SNIA Persistent Memory Programming Model, and that are also supported by the Persistent Memory Development Kit (PMDK) Libraries. Read More

Feedback Needed on New Persistent Memory Performance White Paper

A new SNIA Technical Work draft is now available for public review and comment – the SNIA Persistent Memory Performance Test Specification (PTS) White Paper.

A companion to the SNIA NVM Programming Model, the SNIA PM PTS White Paper (PM PTS WP) focuses on describing the relationship between traditional block IO NVMe SSD based storage and the migration to Persistent Memory block and byte addressable storage.

The PM PTS WP reviews the history and need for storage performance benchmarking beginning with Hard Disk Drive corner case stress tests, the increasing gap between CPU/SW/HW Stack performance and storage performance, and the resulting need for faster storage tiers and storage
products.

Read More