A Deep Dive on xPU Deployment and Solutions

A Deep Dive on xPU Deployment and Solutions Our first and second webcasts in this xPU webcast series explained what xPUs are, how they work, and what they can do. If by you missed them, they are available to watch here in the SNIA Educational Library. On August 24, 2022, the SNIA Networking Storage Forum will host the third webcast in this series, “xPU Deployment and Solutions Deep Dive,” where our xPU experts will explain next steps for deployments, discussing: When to Deploy:
  • Pros and cons of dedicated accelerator chips versus running everything on the CPU
    •  xPU use cases across hybrid, multi-cloud and edge environments
    • Cost and power considerations
Read More

Fibre Channel SAN Hosts and Targets Q&A

At our recent SNIA Networking Storage Forum (NSF) webcast “How Fibre Channel Hosts and Targets Really Communicate” our Fibre Channel (FC) experts explained exactly how Fibre Channel works, starting with the basics on the FC networking stack, link initialization, port types, and flow control, and then dove into the details on host/target logins and host/target IO. It was a great tutorial on Fibre Channel. If you missed it, you can view it on-demand. The audience asked several questions during the live event. Here are answers to them all: Q. What is the most common problem that we face in the FC protocol? A. Much the same as any other network protocol, congestion is the most common problem found in FC SANs. It can take a couple of forms including, but not limited to, host oversubscription and “Fan-in/Fan-out” ratios of host ports to storage ports, but it is probably the single largest generator of support cases. Another common problem is the ‘Host cannot see target’ kind of problem. Read More

Demystifying the Fibre Channel SAN Protocol

Every wonder how Fibre Channel (FC) hosts and targets really communicate? Join the SNIA Networking Storage Forum (NSF) on September 23, 2021 for a live webcast, “How Fibre Channel Hosts and Targets Really Communicate.” This SAN overview will dive into details on how initiators (hosts) and targets (storage arrays) communicate and will address key questions, like:
  • How do FC links activate?
  • Is FC routable?
  • What kind of flow control is present in FC?
  • How do initiators find targets and set up their communication?
  • Finally, how does actual data get transferred between initiators and hosts, since that is the ultimate goal?
Read More

Storage for Applications Webcast Series

Everyone enjoys having storage that is fast, reliable, scalable, and affordable. But it turns out different applications have different storage needs in terms of I/O requirements, capacity, data sharing, and security.  Some need local storage, some need a centralized storage array, and others need distributed storage—which itself could be local or networked. One application might excel with block storage while another with file or object storage. For example, an OLTP database might require small amounts of very fast flash storage; a media or streaming application might need vast quantities of inexpensive disk storage with extra security safeguards; while a third application might require a mix of different storage tiers with multiple servers sharing the same data. This SNIA Networking Storage Forum “Storage for Applications” webcast series will cover the storage requirements for specific uses such as artificial intelligence (AI), database, cloud, media & entertainment, automotive, edge, and more. With limited resources, it’s important to understand the storage intent of the applications in order to choose the right storage and storage networking strategy, rather than discovering the hard way that you’ve chosen the wrong solution for your application. We kick off this series on October 5, 2020 with “Storage for AI Applications.” AI is a technology which itself encompasses a broad range of use cases, largely divided into training and inference. Read More

Q&A: Security of Data on NVMe-oF

Ensuring the security of data on NVMe over Fabrics was the topic of our SNIA Networking Storage Forum (NSF) webcast “Security of Data on NVMe over Fabrics, the Armored Truck Way.” During the webcast our experts outlined industry trends, potential threats, security best practices and much more. The live audience asked several interesting questions and here are answers to them. Q. Does use of strong authentication and network encryption ensure I will be compliant with regulations such as HIPAA, GDPR, PCI, CCPA, etc.? A. Not by themselves. Proper use of strong authentication and network encryption will reduce the risk of data theft or improper data access, which can help achieve compliance with data privacy regulations. But full compliance also requires establishment of proper processes, employee training, system testing and monitoring. Compliance may also require regular reviews and audits of systems and processes plus the involvement of lawyers and compliance consultants. Q. Does using encryption on the wire such as IPsec, FC_ESP, or TLS protect against ransomware, man-in-the middle attacks, or physical theft of the storage system? Read More

A Storage Debate Q&A: Hyperconverged vs. Disaggregated vs. Centralized

The SNIA Networking Storage Forum recently hosted another webcast in our Great Storage Debate webcast series. This time, our SNIA experts debated three competing visions about how storage should be done: Hyperconverged Infrastructure (HCI), Disaggregated Storage, and Centralized Storage. If you missed the live event, it’s available on-demand. Questions from the webcast attendees made the panel debate quite lively. As promised, here are answers to those questions. Q. Can you imagine a realistic scenario where the different storage types are used as storage tiers? How much are they interoperable? Read More

Protecting NVMe over Fabrics Data from Day One, The Armored Truck Way

With ever increasing threat vectors both inside and outside the data center, a compromised customer dataset can quickly result in a torrent of lost business data, eroded trust, significant penalties, and potential lawsuits. Potential vulnerabilities exist at every point when scaling out NVMe® storage, which requires data to be secured every time it leaves a server or the storage media, not just when leaving the data center. NVMe over Fabrics is poised to be the one of the most dominant storage transports of the future and securing and validating the vast amounts of data that will traverse this fabric is not just prudent, but paramount. Read More

NVMe Key-Value Standard Q&A

Last month, Bill Martin, SNIA Technical Council Co-Chair, presented a detailed update on what’s happening in the development and deployment of the NVMe Key-Value standard. Bill explained where Key Value fits within an architecture, why it’s important, and the standards work that is being done between NVM Express and SNIA. The webcast was one of our highest rated. If you missed it, it’s available on-demand along with the webcast slides. Attendees at the live event had many great questions, which Bill Martin has answered here: Q. Two of the most common KV storage mechanisms in use today are AWS S3 and RocksDB. How does NVMe KV standards align or differ from them? How difficult would it be to map between the APIs and semantics of those other technologies to NVMe KV devices? A. KV Storage is intended as a storage layer that would support these and other object storage mechanisms. There is a publicly available KVRocks: RocksDB compatible key value store and MyRocks compatible storage engine designed for KV SSDs at GitHub. There is also a Ceph Object storage design available. These are example implementations that can help an implementer get to an efficient use of NVMe KV storage. Q. At which layer will my app stack need to change to take advantage of KV storage?  Will VMware or Linux or Windows need to change at the driver level?  Or do the apps need to be changed to treat data differently?  If the apps don’t need to change doesn’t this then just take the data layout tables and move them up the stack in to the server? Read More

An FAQ on Data Reduction Fundamentals

There’s a fair amount of confusion when it comes to data reduction terminology and techniques. That’s why the SNIA Networking Storage Forum (NSF) hosted a live webcast, “Everything You Wanted to Know About Storage But Were Too Proud to Ask: Data Reduction.”  It was a 101-level lesson on the fundamentals of data reduction, which can be performed in different places and at different stages of the data lifecycle. The goal was to clear up confusion around different data reduction and data compression techniques and set the stage for deeper dive webcasts on this topic (see the end of this blog for info on those). As promised during the webcast, here are answers to the questions we didn’t have time to address during the live event. Q. Does block level compression have any direct advantage over file level compression? Read More

Understanding the NVMe Key-Value Standard

The storage industry has many applications that rely on storing data as objects. In fact, it’s the most popular way that unstructured data—for example photos, videos, and archived messages–is accessed. At the drive level, however, the devil is in the details. Normally, storage devices like drives or storage systems store information as blocks, not objects. This means that there is some translation that goes on between the data as it is ingested or consumed (i.e., objects) and the data that is stored (i.e., blocks). Naturally, storing objects from applications as objects on storage would be more efficient and means that there are performance boosts, and simplicity means that there are fewer things that can go wrong. Moving towards storing key value pairs that get away from the traditional block storage paradigm makes it easier and simpler to access objects. But nobody wants a marketplace where each storage vendor has their own key value API. Read More