Ethernet Roadmap for Networked Storage Q&A

Almost 200 people attended our joint Webcast with the Ethernet Alliance: “The 2015 Ethernet Roadmap for Networked Storage.” We had a lot of great questions during the live event, but we did not have time to answer them all. As promised, we’ve complied answers for all of the questions that came in. If you think of additional questions, please feel free to comment on this blog.

Q. What did you mean by parity of flash with HDD?

A. We were referring to the O’Reilly article in “Network Computing.”  O’Reilly is predicting parity in BOTH capacity and price in 2016.

Q. When do we expect IEEE standards ratification for 25G speed?

A. 2016.  You can see the exact schedule here.

Q. Do you envision the Enterprise, Cloud Providers, HPC, Financials getting rid of their 10/40GbE infrastructure and replacing that with 25/100GbE infrastructure in 2017? Will these customers deploy 100GbE/25GbE switch in the leaf layer in 2017?

A. Deployment will occur over a multi-year time span overall if only because switch infrastructure is expensive to upgrade, as reflected in the Crehan Research forecast.  New deployments will likely move to 25/100GbE as new switches with 100GbE downstream ports become available in 2016.   Just because the Cloud Service Providers are currently the most aggressive in driving new infrastructure purchases, they represent the largest early volumes for 25/100 GbE.  Enterprise is still in the midst of the transition from 1GbE to 10GbE.

Q. What are some of the developments on spanning-tree derivatives vs. Dykstra based derivatives such as OSPF, FSPF for switches?

A. Beyond the scope of this presentation on Ethernet.  Ethernet is defined by the IEEE for L1 and L2 in the ISO model.  Your questions are at L3 and L4, which is handled by organizations like IETF.

Q. With all the speeds possible who is working on flow control?

A. Flow control at the 802.1 level is supported in the Layer 1/2 PHY & MAC by setting upper bounds on the delay through each layer which allows higher layers to comprehend the delays & response times to pause frames. Each new speed & PHY in 802.3 is accompanied by delay constraint specifications to support this.

Q.  Do you have an overlay graphic that shows the Ethernet RDMA roadmap?  If so, is Ethernet storage the primary driver for that technology?

A.  Beyond the scope of this presentation on Ethernet.  Ethernet is defined by the IEEE for L1 and L2 in the ISO model.  Your questions are at L3 and L4, which is handled by organizations like IETF and the InfiniBand Trade Association.

Q. The adoption of faster and new Ethernet always has to do with the costs of acquiring new technology. How long do you think it will take to adopt/acquire faster Ethernet in datacenters now that the development is happening much faster than the last 20 years?

A. Please see the chart on slide 7 where Crehan Research predicts how fast the technology will diffuse into deployments.

Q. What do you expect as cost comparison between Ethernet and InfiniBand going forward?
Also, what work is being done to reduce latency?

A. Beyond the scope of this presentation.  Latency is primarily a consequence of design methodologies and semiconductor process technology, and thus under the control of the silicon device manufacturers.  Some vendors prioritize latency more than others.

Q. What’s the technical limitation as speeds go higher and higher?

A. A number of factors limit speeds going faster and faster, but the main problem is that materials attenuate signals as they travel at higher frequencies.

Q. Will 1GbE used for manageability purposes disappear from public cloud? If so, what is the expected time frame?

A. This is a choice for end users.  Most equipment is managed on a separate network for security concerns, but users can eliminate these management networks at any time.

Q. What are the relative market size predictions for the expanding number of standards (25G, 50G, 100G, 200G, etc.)?

A. See the Crehan Research forecast in the presentation.

Q. What is the major difference between SMF & MMF for the not so initiated?

A. The SMF has a 9um core while the MMF has a 50um core.  Different lasers are used for each fiber type and MMF typically goes 100 meters above 10GbE and SMF goes from 500m to 10km.

Q. Will 25G be available through both copper and fibre connectivity?

A. Yes.  IEEE 802.3 work is currently underway to specify 25Gb/s on twinax (“direct attach copper)” to 5 meters, printed circuit backplane up to ~1m, twisted pair copper to 30m, multimode fiber to 100m.  There is no technology barrier to 25G on SMF, just that a standards project to specify it has not started yet.

Q. This is interesting from a hardware viewpoint, but has nothing to do with storage yet.  Are we going to get to how this relates to storage other than saying flash drives are fast and only Ethernet can keep up?

A. Beyond the scope of this presentation on Ethernet.  Ethernet is defined by the IEEE for L1 and L2 in the ISO model.  Your questions are directed at the higher layers.  The key point of this webcast is that storage networking engineers need to pay much more attention to the Ethernet roadmap than they have historically, primarily because of NVM.

Q. How does “SFP 28″ fit in this mix?  Is it required for 25G?

A. SFP28 connectors and modules are required for 25GbE because they give better performance than SFP+ that only works to 10GbE.

Q. Can you provide the quick difference between copper & optical on speed & costs?

A. Copper and optical Ethernet links are usually standardized at the same speed.  400GbE is not defining a copper link but an active Direct Attached Cable (DAC) will probably support 400GbE.  Cost depends on volume and many factors and is beyond the scope of this presentation.  Copper is usually a fraction of the cost of optical links.

Q. Do you think people will try to use multiple CAT 5e to get more aggregate bandwidth to the access points to avoid having to run Fibre to them?

A. IEEE is defining 2.5GBASE-T and 5GBASE-T to enable Cat5e to support faster wireless access points.

Q. When are higher speeds and PoE going to reach the point when copper based Ethernet will become a viable heat source for buildings thus helping the environment?

A. :)  IEEE is defining 4 wire PoE to deliver at least 60W to end devices.  You can find out more here.

Q. What are the use cases for 2.5Gb and 5.0Gb Base-T?

A. The leading use case for 2.5G/5GBASE-T is to provide the uplink for wireless LAN access points that support 802.11ac and future wireless technology.  Wireless LAN technology has advanced to the point where >1Gb/s BW is needed upstream from the AP, and 2.5G/5G provide a higher speed uplink while preserving the user’s investment in Cat5e/Cat6 cabling.

Q. Why not have only CFP2 sockets right away with things disabled for lower speeds for all the intervening years leading to full-fledged CFP2?

A. CFP2 is defined for 100GbE and 8 ports can be used on a 1U switch. 100GbE switches are shifting to QSFP28 so that 32 ports of 100GbE is supported in a 1U switch at low cost.  The CFP2 is much more expensive than QSFP28 and will not be used for lower speeds because of the high cost.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next Webcast: The 2015 Ethernet Roadmap for Networked Storage

The ESF is excited to announce our next live Webcast, “The 2015 Ethernet Roadmap for Networked Storage.”

For over three decades, Ethernet has advanced on a simple “powers-of-ten” speed increases, and this model has served the industry well.  Ethernet is changing in big ways and the Ethernet Alliance has captured the latest changes in the 2015 Ethernet Roadmap.

On June 30th at 10:00 a.m. PT an expert panel comprised of Scott Kipp, President of the Ethernet Alliance, David Chalupsky, Chair IEEE P802.3bq/bz TFs and the Ethernet Alliance BASE-T Subcommittee and myself will present the Ethernet Alliance’s 2015 Ethernet Roadmap for the networking technology that underlies most of future network storage.

SNIA has focused on protocols and usage models and more or less just takes Ethernet for granted.  The biggest technology disruption in the storage space is the emergence into the mainstream of Non-Volatile Memory (NVM), FLASH in particular.  NVM increasingly moves system bottlenecks from the storage subsystem to the network.  Developments in NVM — most recently 3D FLASH — assure that the cost per GB will continue aggressive declines and demand for bandwidth will go up.  NVM will become more prevalent, making the roadmap for Ethernet increasingly more important to the storage networking community.

This will be a live and interactive session. I encourage you to register now and bring your questions for our experts. I hope to see you on June 30th.